Estimating Loess Plateau Average Annual Precipitation with Multiple Linear Regression Kriging and Geographically Weighted Regression Kriging
نویسندگان
چکیده
Estimating the spatial distribution of precipitation is an important and challenging task in hydrology, climatology, ecology, and environmental science. In order to generate a highly accurate distribution map of average annual precipitation for the Loess Plateau in China, multiple linear regression Kriging (MLRK) and geographically weighted regression Kriging (GWRK) methods were employed using precipitation data from the period 1980–2010 from 435 meteorological stations. The predictors in regression Kriging were selected by stepwise regression analysis from many auxiliary environmental factors, such as elevation (DEM), normalized difference vegetation index (NDVI), solar radiation, slope, and aspect. All predictor distribution maps had a 500 m spatial resolution. Validation precipitation data from 130 hydrometeorological stations were used to assess the prediction accuracies of the MLRK and GWRK approaches. Results showed that both prediction maps with a 500 m spatial resolution interpolated by MLRK and GWRK had a high accuracy and captured detailed spatial distribution data; however, MLRK produced a lower prediction error and a higher variance explanation than GWRK, although the differences were small, in contrast to conclusions from similar studies.
منابع مشابه
Spatio-temporal Analysis of Precipitation and Temperature Distribution over Turkey
In this study, mean annual precipitation and temperature values observed at 225 meteorological observations over Turkey are used to disclose spatial distribution of mean annual precipitation and temperature values. Data components were obtained from the Turkish State Meteorological Service for 34 years period (1970-2003). The basic objectives of the study are: to infer the nature of spatial var...
متن کاملComparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests
Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...
متن کاملApplication of a Hybrid Interpolation Method Based on Support Vector Machine in the Precipitation Spatial Interpolation of Basins
In this paper, we applied the support vector machine (SVM) to the spatial interpolation of the multi-year average annual precipitation in the Three Gorges Region basin. By combining it with the inverse distance weighting and ordinary kriging method, we constructed the SVM residual inverse distance weighting, as well as the SVM residual kriging precipitation interpolation model and compared them...
متن کاملComparison of Geographically Weighted Regression and Regression Kriging for Estimating the Spatial Distribution of Soil Organic Matter
Soil organic matter (SOM) is an important component of soils, and knowing the spatial distribution and variation of SOM is the premise for sustainably utilizing soils. The objective of this study was to compare geographically weighted regression (GWR) with regression kriging (RK) for estimating the spatial distribution of SOM using field-sample data in SOM and auxiliary data in correlated envir...
متن کاملGeostatistical Mapping of Mountain Precipitation Incorporating Autosearched Effects of Terrain and Climatic Characteristics
Hydrologic and ecologic studies in mountainous terrain are sensitive to the temporal and spatial distribution of precipitation. In this study a geostatistical model, Auto-Searched Orographic and Atmospheric Effects Detrended Kriging (ASOADeK), is introduced to map mountain precipitation using only precipitation gauge data. The ASOADeK model considers both precipitation spatial covariance and or...
متن کامل